From the Desk of NRLCA President Jeanette P. Dwyer

The New Rural Route Evaluated Compensation System

We are pleased to share with you a description of the new Rural Route Evaluated Compensation System (RRECS) and the accompanying engineered and statistical standards. As you can see from the pages that follow, there remain additional tasks that must be completed before the new RRECS can be implemented in the field. This process will take time and will require additional meetings between NRLCA and Postal Service representatives. Additionally, all rural routes will need to be mapped before implementation. Accordingly, deployment of the new system is not imminent.
We understand there will be questions about the new RRECS and we will be providing these answers as they become available on the NRLCA website and in the National Rural Letter Carrier magazine.

The Rural Route Evaluated Compensation System

On June 23, 2018, Chairperson Louis MartinVega issued the final report on the new system for determining evaluations of rural routes. The report consists of an 85 -page document containing the Chairperson's determinations of how the system will work, including capturing the data necessary to evaluate routes, determining the standard time for all carrier work activities, and specifying computer logic for calculating route evaluations. Dr. Martin-Vega's submission included an appendix consisting of hundreds of pages of documentation of work content, standard methods, and step-by-step work
measurement and statistical procedures used in developing standard times. It also contained an appendix of 47 support documents that provide background on how he reached his final determinations.
The final product described in Dr. MartinVega's report is the Rural Route Evaluated Compensation System (RRECS). It represents the culmination of five and one-half years of joint efforts by the NRLCA and USPS, with oversight provided by Chairperson Martin-Vega and a panel of industrial engineering experts, to develop a new system for evaluating rural routes. The goal of these efforts was to create a system that was fair to both USPS and rural carriers. For USPS, this meant a system that resulted in efficient delivery on rural routes and was capable of responding flexibly to changing business conditions. For rural carriers, it meant a system that covered all work activities, set realistic standard times for completing each activity, resulted in time off incentives when carriers worked at an incentive pace, and provided equal incentive opportunity across rural routes, irrespective of specific route characteristics.

Origins of RRECS

The requirement to create RRECS is a part of the national contract award issued by Arbitrator Jack Clarke on July 3, 2012. Arbitrator Clarke had advised USPS and NRLCA that his award would require them to develop a new system for evaluating routes. The parties chose to enter a Memorandum of Understanding (MOU) on how to develop RRECS rather than have Arbitrator

Clarke dictate how it would be done. The resulting MOU lays out a two-step procedure under which USPS and NRLCA each selected a representative and then the two representatives selected a neutral chairperson. USPS appointed Dr. Don Ratliff, a retired professor from Georgia Tech, who is an industrial engineer and expert in delivery systems and information technology, and who appeared as an expert witness on standards issues for USPS in the 2012 arbitration. NRLCA appointed Dr. Ken Mericle, a retired professor from the University of Wisconsin-Extension, School for Workers. Dr. Mericle is an industrial engineer and expert in work measurement and incentive systems. Since 1999 Dr. Mericle has advised the NRLCA on standards issues and appeared in several national contract and grievance arbitrations on their behalf. Ratliff and Mericle chose Dr. Louis Martin-Vega as the neutral Chairperson. Dr. Martin-Vega is Dean of the College of Engineering at North Carolina State University. He is an industrial engineer and has a distinguished record of overseeing largescale research and administrative projects. These three individuals constitute the Panel charged under the MOU with developing the new system.
The Panel began its work in January 2013. Its main role has been to determine the technical requirements of RRECS and to oversee the work of design teams to insure they are meeting the requirements. The Panel has also been heavily involved in testing and validating the various subsystems in RRECS. The Teams are composed of USPS employees and outside consultants. NRLCA has been represented on all development teams and had access to all of their work output.

Development of RRECS

From a bird's eye view, RRECS is a simple system. It has three components: standards, a data capture system, and business logic. In developing a system like RRECS, engineers start by identifying all the work activities rural carriers perform. Once each work activity has been defined, a standard is developed to determine the amount of time required for a single occurrence of the activity. Technically, a standard is defined
as the time required by an experienced and motivated worker of normal skill and ability, working at a normal day-work pace, to perform a specific task under specific conditions with allowance time to meet personal needs, overcome the fatiguing aspects of work and compensate for unavoidable delays.
In RRECS, the standards were developed by IISE Solutions, a division of the Institute of Industrial and Systems Engineering (IISE), the professional association of industrial engineers. The Panel was heavily involved in the development and validation of the standards. In total RRECS includes 112 engineered standards. Each standard is fully documented, including a plain-English description of the standard method for performing the activity, a summary of the standard time and its major components, a detailed analysis of how each component of time is derived, and support documents used in developing the standard. In addition to the IISE engineered standards, RRECS contains some statistical standards for activities that could not be measured using industrial engineering work measurement techniques (driving and traffics stops) and a few instances where the variation in the work was so great that standards could not be developed, and actual time was allowed.
The second component of RRECS is the data capture system. To determine the total time allowed for a work activity requires both the standard, or time for a single occurrence of the activity, and a count of the number of times the activity occurred. The RRECS data capture system provides the count. In specifying how activities were to be counted, the Panel relied on four principles. First, all data capture systems should be digitized. Since we live in the digital age, this principle may seem self-evident; however, the Panel soon discovered that some of the required data was only available in pencil and paper format, while some, such as physical details of a route, existed only in the minds of USPS employees. Second, whenever possible, obtain the data from existing USPS data systems rather than create new data systems for RRECS. The Panel discovered that many of the required
data elements were already available somewhere within USPS, where they were being collected for purposes other than rural carrier compensation. In these situations, the task at hand was to identify, extract, transfer and reformat as necessary, so that the data element could be used in RRECS. Third, whenever possible, use automated rather than manual data collection. In the end, some RRECS data capture procedures are fully automated, some are semi-automated with minimal carrier input, and a few required carrier input with minimal automation. Fourth, when manual input is necessary, the cost of counting should be low relative to the cost of performing the work activity being counted. It makes no sense to have elaborate and costly systems to count activities that contribute relatively little to the overall route evaluation.
In total, the data capture system tracks and counts 69 data elements used by RRECS in calculating standard time. The data capture system consists of several important subcomponents. The Mobile Delivery Devices (MDD) or hand-held scanners are used in counting door delivery and pickup activities, bundled mail counts, and in capturing elapsed time for actual time activities. A total of 31 RRECS data elements are captured by scans in a semi-automated process. The carrier makes the scans, and the remainder of the process of capturing, identifying, transferring, ingesting and analyzing the scans is fully automated.
A second important subsystem, the Rural Street Database (RSD), was created for RRECS to map routes digitally and collect information about the physical characteristics of the route not available elsewhere. This subsystem consists of a computer mapping program somewhat like Google Maps that is used by carriers to determine the locations of mailstops, mailboxes, park points for door deliveries and door locations. The carrier also uses the software to verify the travel path on the route. Time and locational data collected by the mapping software flows to a database where it is used to calculate driving and walking distances on the route. It was also used to develop statistical standards for drive speed and stop times at traffic control points. Thousands of rural carriers have
used the software to map their routes. Their input was invaluable to the design teams in debugging the software and introducing enhanced features to improve its performance.
Other subsystems of the data capture system include End-of-Run (EOR) reports, the Rural Work Hour Tracker (RWHT), and the Informed Visibility System. The EOR provides counts of automated mail and feeds the counts directly to RRECS in a fully automated process. RWHT is a relatively new USPS web application used to enter and track work hours for rural carriers. In RRECS, it is used primarily to capture office walking distances. Carriers and their supervisors measure walking distances in the office and enter the data in the user interface. Once baseline distances have been collected, remeasurement is necessary only if the layout of the office changes. Informed Visibility (IV) is a newly organized USPS real-time source for all mail and mail aggregate information. It is used in RRECS in developing counts of carrier route flats.
The final data capture subsystem is a muchreduced mail count that the Panel calls the mini mail count. After experimenting with various alternatives, the Panel concluded that manual counting could not be avoided for four data elements, including most importantly random letters and random flats. These data elements will be counted during a mini mail count period and the results will be used in standard time calculations until the next mini mail count.
The third component of RRECS is business logic, which includes the formulas, data sorting procedures and logic statements used in calculating standard time. The basic calculation is straightforward:
TOTAL STANDARD TIME = STANDARD (time for one occurrence) X COUNT (number of occurrences). RRECS contains 87 calculation sequences used to calculate total standard time for rural routes. Many of the 87 sequences follow the basic calculation above: total standard time for the activity equals the standard multiplied by the count. The computer program simply pulls the value of the standard from the standards file and the count from the data capture system and
performs the calculation. Some of the sequences are complex because logic is required to perform a calculation in some situations but not others. For example, a sequence may apply only to routes with government vehicles or withdrawal options. Whether the sequence logic is simple or complex, once it has been tested and validated it will be performed continuously and accurately by fully automated computer code.

Rural Carrier Responsibilities under RRECS

RRECS relies heavily on input from rural letter carriers. Rural routes must be mapped with the RSD software before they can be covered by RRECS. Rural carriers are central to this process. After a couple of hours of training, the carrier, with the assistance of their supervisor and computer technicians, will sit at the computer and map the route. To date about 5,000 routes have been mapped using this process, and eventually all 75,000 rural routes will have to be mapped for RRECS to be fully functional. Carriers play a key role because only they have knowledge of park and delivery point locations and other route characteristics and details. Essentially, mapping is a process of extracting information that exists only in carriers' brains and converting it to digital information that can be entered into a computer database and analyzed. There is great variation among carriers in computer skills. Some carriers are comfortable mapping their routes with minimal input from technicians, while others focus on providing the key route information to the technician who does most of the mapping. Both methods get the job done. The Panel has recommended a simplified mapping process to NRLCA and USPS, which if implemented would make mapping easier for carriers.
The second major change in carrier responsibilities under RRECS involves an enhanced role for the hand-held scanners. The MDDs will have several additional scan and data entry options required to collect input data for RRECS. Rural carriers will be responsible for making the additional scans at the proper times and locations. This will be an on-going job
responsibility for carriers. This function is very important in ensuring that all information is available to properly evaluate the route.
The third area of carrier responsibilities is the mini mail count. Under RRECS the scope of the mail count has been greatly reduced, but rural carriers and their supervisors will still be responsible for counting the few remaining items. The Panel hopes that the reduced role of the mini mail count will eliminate most of the inaccuracies associated with counting and representativeness of the 2 - or 4 -week period under current mail count procedures.
The fourth carrier responsibility is to measure, with their supervisor, the office walking segments used by RRECS to calculate office walking time. The fifth area of carrier responsibilities under RRECS is to learn and follow changed work rules required by RRECS. For the most part, RRECS has no direct impact on how work activities are performed. RRECS is primarily designed to measure and fairly compensate carriers for work performed under current standard operating procedures (SOP). In a few instances, minor changes in SOPs were necessary to ensure that all carrier work activities are properly compensated, and that none are double counted. In the case of changed operating procedures, it is the USPS's responsibility to issue new SOPs and train carriers as necessary.

RRECS Impact on Evaluations

RRECS minimizes the use of one-size-fits-all standards, which are common under the current Evaluated Compensation System (ECS). RRECS will produce evaluations that more closely reflect the actual characteristics - mail volumes, walking distances, mail handling procedures, drive speeds, delivery systems (1-, 2- or 3-bundle), box types, etc. - of the individual rural routes. RRECS standards and business logic are designed to capture variation between routes on these and other inputs. The resulting evaluations will more accurately reflect the work being performed.
RRECS drive speed standards illustrate how this process works. Under the current ECS, drive time is based on the overall mileage on the
basic route and a single drive speed standard of 30 miles per hour or 2 minutes per mile. Drive time equals route mileage times 2 minutes per mile. Under RRECS, the basic route is divided into intervals based on route mapping results. In general, an interval is defined as the distance from one full stop to the next. RRECS has 47 different drive time standards ranging from 4.57 miles per hour for intervals of less than 15 feet to 39.45 miles per hour for intervals greater than 5180 feet. The RRECS standards are applied on an interval-by-interval basis. For example, a rural route may have an initial interval of three miles with no stops from the post office to the first mailstop that would be credited at 39.45 miles per hour, followed by 100 intervals of 40 feet between mailboxes in a subdivision each credited at 6.77 miles per hour. The total drive time for the route is the sum of the interval times for all intervals on the route. The same drive standards are used to credit out-of-route driving for door deliveries based on distance driven.
A second feature of RRECS that will have an impact on evaluations relates to the way count data is used in calculating evaluations. Under the current ECS, the key input data on mail volumes and route characteristics comes from a two or four-week mail count. The manual procedures used in counting mail are subject to inaccuracies. They are also based on the questionable assumption that the mail count period accurately reflects average conditions on the route for the entire year. RRECS addresses both problems. First, most input data in RRECS is collected through automated or semi-automated procedures that minimize the potential for inaccuracy. Second, the RRECS volume counts used in evaluations will be based on averaging daily volumes over an entire 12month period.
A new automated feature of RRECS, referred to as "coverage", determines which addresses on a route do not receive mail on any given day and adjusts the box time to reflect actual deliveries. As with other count data, each route will have a coverage factor based on data collected daily over 12 months. A basic principle of RRECS is
that carriers should be paid for all work activities they perform, and conversely, they should not be paid for activities they do not perform. The coverage technology requires additional development, testing, and validation before it can be included in RRECS.
RRECS standards are the result of careful application of generally accepted industrial engineering principles. The 112 engineered standards in RRECS are based on a very detailed work measurement technique called Methods Time Measurement (MTM1), which is the most widely used predetermined motiontime system in the world. The standards were developed, validated and documented by skilled and experienced industrial engineers from IISE Solutions, and they have been thoroughly reviewed by the Panel. The statistical standards in RRECS are all based on very large numbers of observations obtained over a full year on a large sample of representative rural routes. All standards, engineered and statistical, include allowance time for personal needs, fatigue and delays. By contrast, the standards in ECS are the product of negotiations, arbitration awards and studies that do not qualify as accepted industrial engineering practice. Some of them have not changed in over 50 years.
It is difficult to predict exactly what will happen on individual routes as RRECS is rolled out. However, it is safe to say that RRECS is based on advanced data capture technology and generally accepted industrial engineering practices in work measurement. These practices should yield evaluations that fairly reflect the work being performed and time-off incentive potential that reflects the skill and efforts of rural carriers.

Next Steps

Delivery of the Panel Chairperson's Final Determination signals the end of the Panel's direct involvement with RRECS. Since the Chairperson was empowered to make decisions about RRECS that are final and binding on the Parties by the Memorandum of Understanding between USPS and NRLCA in Arbitrator

Clarke's 2012 Arbitration award, both sides are now obligated to implement his determinations regarding RRECS.
Dr. Martin-Vega's determinations can be divided into two broad categories: RRECS features that are completely developed, tested, validated and ready to be implemented; and features that are incomplete because they require additional development, testing or validation. All standards fall in the first category. The documentation and final values of standards are in place, and no additional work needs to be done on them to implement RRECS. Most of the data capture and business logic has also been completed and is ready for implementation.
Some aspects of the data capture and the business logic fall in the second category and require additional work. Some of the remaining work is a direct result of the process laid out in the MOU, which specifies a three-step procedure for completing the Panel's work. Step one required the Panel Chairperson to submit a report with his recommendations for the new system; the report was delivered on October 31, 2017. Step two gave the parties 30 days to evaluate and comment
on the Chairperson's recommendations; the Panel received 62 comments from the parties at the end of February 2018. Step three allowed the Panel Chairperson 90 days to respond to the parties' comments, conduct further analysis, make changes and submit his final determinations; Dr. Martin-Vega submitted his determinations and all backup documentation on June 23, 2018.
The parties' comments and panel responses generated additional tasks that had to be completed after the delivery of the final determinations. There were also some remaining tasks from the October report that USPS did not complete between October 31, 2017 and June 23,2018 , presumably because they were waiting for the final determination from Chairperson Martin-Vega. At this point, there is a list of activities in the Final Determination and a companion document that must be completed before RRECS can be implemented. Dr. MartinVega's determinations specify in detail the requirements that must be met in completing each of the remaining tasks. It is now the responsibility of USPS and NRLCA to complete this work and roll out the new system.

Explanation of 4241-M Comparison

The chart on the following pages compares the current $4241-\mathrm{M}$ worksheet, commonly called the Mail Count Calculator, and the corresponding new standards from the RRECS. The $4241-\mathrm{M}$ is shown in green. The standards listed under either the Office Time or Route Time columns are currently applied to the weekly averages obtained through a mail count. The corresponding RRECS standards are shown in the middle section. In many cases, there is not a one-to-one comparison. Please note that MANY of the standards applied in RRECS depend upon the carrier's input of data. The phrase "Weekly Avg from Carrier MDD Input," which you will see repeatedly in the Comments column, means that standard depends entirely on the carrier making an entry or a scan into the hand-held scanner daily.
The RRECS time for route miles is determined from the mapping of the route through use of the Rural Street Database (RSD) and uses the Drive Speed Matrix and the Traffic Control Points allowances to calculate the total drive time on the route.
In RRECS, Regular and Central Boxes are further subdivided. Within each subdivision, there is a standard based on the bundling system of the route. Very simply, routes that do not receive DPS Letters or DPS Flats fall into the "one-bundle" category. Those routes receiving only DPS Letters are considered "two-bundle." And those receiving both DPS Letters and DPS Flats are considered "three-bundle."
Also included under Box Time is a new standard for verifying the address on each letter and flat delivered. These standards are applied to the total average weekly volume of flats and the total average weekly volume of letters.

Please note that, for explanation, the standard is listed under both Regular and Central boxes, but it is only applied ONCE to the total weekly average volumes, regardless of where the mail is delivered.
Some volume-related data, such as average weekly Random Letters and Random Flats, will be captured and calculated during a periodic physical mail count, much like the current system. The parties have not yet negotiated the details on timing and frequency of these "mini" mail counts.
Loading Time and the time for all required End of Shift Duties will be captured under RRECS on a daily basis. The evaluation will include the weekly average time for these functions.
Parcels are credited in RRECS depending on the carrier input into the MDD Scanner as to the location of the delivery (Door, Mail Box or Parcel Locker). The location of the delivery triggers the appropriate standards to be applied. All walking distances within the office will be input via the Office Walk Distance Database. The distances are defined and will be measured by local management and the carrier. Dismount walking distances on the street are input into the RSD.
As in the current system, the standards for Withdrawal Time and USPS Vehicle are only applied to the appropriate routes designated as performing withdrawal duties or having a government vehicle assigned.
The Reloading standards in RRECS are best illustrated by the included Lookup Tables which simplify the standard by number of trays (estimated from mail volumes) and bundling system.
4241-M Comparison

4241-M Comparison

4241-M Comparison

4241-M Comparison

LOOKUP TABLE: DAILY STANDARD TIME FOR RELOADING
BASED ON NUMBER OF TRAYS AND 1, 2 OR 3 BUNDLES

Number of Trays	1-Bundle	2-Bundle	3-Bundle
1	0.6957	0.6957	0.6957
2	0.8689	0.8689	1.3914
3	2.2820	2.2820	2.8045
4	2.4023	3.6951	4.2176
5	4.1567	5.4495	5.9720
6	4.3723	5.6651	7.7264
7	4.5879	7.4195	9.4808
8	6.3423	7.6351	11.2352
9	6.5579	9.3895	12.9896
10	6.7735	9.6051	14.7440
11	8.5279	11.3595	16.4984
12	8.7435	11.5751	18.2528
13	8.9591	13.3295	20.0072
14	10.7135	13.5451	21.7616
15	10.9291	15.2995	23.5160

Drive Speed Matrix

Distance Range (ft)	Standard Speed (mph)	Standard Speed (min/ft)
$0 \mathrm{ft}-15 \mathrm{ft}$	4.57	0.00249
$15 \mathrm{ft}-20 \mathrm{ft}$	6.44	0.00176
$20 \mathrm{ft}-30 \mathrm{ft}$	6.43	0.00177
$30 \mathrm{ft}-45 \mathrm{ft}$	6.77	0.00168
$45 \mathrm{ft}-65 \mathrm{ft}$	7.42	0.00153
$65 \mathrm{ft}-90 \mathrm{ft}$	8.05	0.00141
$90 \mathrm{ft}-120 \mathrm{ft}$	8.86	0.00128
$120 \mathrm{ft}-155 \mathrm{ft}$	9.79	0.00116
$155 \mathrm{ft}-195 \mathrm{ft}$	10.77	0.00106
$195 \mathrm{ft}-240 \mathrm{ft}$	11.79	0.00096
$240 \mathrm{ft}-290 \mathrm{ft}$	12.87	0.00088
$290 \mathrm{ft}-345 \mathrm{ft}$	13.91	0.00082
$345 \mathrm{ft}-405 \mathrm{ft}$	14.89	0.00076
$405 \mathrm{ft}-470 \mathrm{ft}$	15.93	0.00071
$470 \mathrm{ft}-540 \mathrm{ft}$	17.00	0.00067
$540 \mathrm{ft}-615 \mathrm{ft}$	18.01	0.00063
$615 \mathrm{ft}-695 \mathrm{ft}$	18.97	0.00060
$695 \mathrm{ft}-780 \mathrm{ft}$	19.93	0.00057
$780 \mathrm{ft}-870 \mathrm{ft}$	20.89	0.00054
$870 \mathrm{ft}-965 \mathrm{ft}$	21.78	0.00052
$965 \mathrm{ft}-1065 \mathrm{ft}$	22.70	0.00050
$1065 \mathrm{ft}-1170 \mathrm{ft}$	23.52	0.00048
$1170 \mathrm{ft}-1280 \mathrm{ft}$	24.47	0.00046
$1280 \mathrm{ft}-1395 \mathrm{ft}$	25.24	0.00045
$1395 \mathrm{ft}-1515 \mathrm{ft}$	25.87	0.00044
$1515 \mathrm{ft}-1640 \mathrm{ft}$	26.72	0.00043
$1640 \mathrm{ft}-1770 \mathrm{ft}$	27.60	0.00041
$1770 \mathrm{ft}-1905 \mathrm{ft}$	28.29	0.00040
$1905 \mathrm{ft}-2045 \mathrm{ft}$	29.00	0.00039
$2045 \mathrm{ft}-2190 \mathrm{ft}$	29.58	0.00038
$2190 \mathrm{ft}-2340 \mathrm{ft}$	29.76	0.00038
$2340 \mathrm{ft}-2495 \mathrm{ft}$	30.74	0.00037
$2495 \mathrm{ft}-2665 \mathrm{ft}$	31.41	0.00036
$2665 \mathrm{ft}-2820 \mathrm{ft}$	31.66	0.00036
$2820 \mathrm{ft}-2990 \mathrm{ft}$	32.22	0.00035
2990 ft - 3165 ft	32.49	0.00035
$3165 \mathrm{ft}-3345 \mathrm{ft}$	33.03	0.00034
$3345 \mathrm{ft}-3530 \mathrm{ft}$	33.91	0.00034
$3530 \mathrm{ft}-3720 \mathrm{ft}$	34.13	0.00033
$3720 \mathrm{ft}-3915 \mathrm{ft}$	34.41	0.00033
$3915 \mathrm{ft}-4115 \mathrm{ft}$	35.07	0.00032
$4115 \mathrm{ft}-4320 \mathrm{ft}$	35.35	0.00032
$4320 \mathrm{ft}-4530 \mathrm{ft}$	35.90	0.00032
$4530 \mathrm{ft}-4745 \mathrm{ft}$	35.88	0.00032
$4745 \mathrm{ft}-4965 \mathrm{ft}$	35.80	0.00032
$4965 \mathrm{ft}-5190 \mathrm{ft}$	37.15	0.00031
> 5190 ft	39.45	0.00029

How Does the Drive Speed Matrix Work?

RRECS uses the table to the left to calculate drive time on the basic route. The process starts with carriers locating mailstops and traffic control points when they map their routes. The RRECS mapping program stores these GPS locations in the Rural Street Database (RSD). RRECS computer code calculates drive "intervals" distances based on the GPS data and a road grid, in a process that works much like plotting a route on Google Maps. In RRECS, an interval is defined as the distance from one mailstop, traffic control point, or segment end point (right or left turn, new road name, etc.) to the next mailstop, traffic control point or segment end point. The result of analyzing the mapping data is a listing of the route's intervals distances in consecutive order.
Drive time for an interval equals DISTANCE times SPEED. The RRECS computer logic selects the appropriate speed for each interval from the Drive Speed Matrix (DSM). For example, if an interval is bound by two mailstops 40 feet apart, the appropriate speed from the DSM is 0.00168 minutes per foot (6.77 miles per hour), and the standard time for driving the interval is (Distance $=40$ feet times Speed $=0.00168) 0.0672$ minutes or about 4 seconds. If an interval is a mile long, say the distance from the post office to the first mailstop with no traffic control or segment end point in between, standard drive time is (5280 feet times 0.00029 minutes per foot) 1.5312 minute or about 92 seconds.
The computer code repeats the basic calculation for each interval and adds all the interval drive times to arrive at the total Drive Time for the Basic Route. This procedure results in drive times that reflect the specific realities of each rural route.
The DSM is also used to calculate total time for out-of-route driving for door deliveries and pickups. Once again, RRECS calculates these distances and then calculates standard drive time from the distances and the appropriate DSM speeds.

